Math 261

Fall 2023
Lecture 8

class QZ 6:
Consider the graph

1) $\lim f(x)=3 /$
of $f(x)$ given below
$x \nrightarrow 2^{-}$
Not equal

2) $\lim f(x)=1]$ $x+2^{+}$
3) $\lim f(x)=$ D.N.E. \checkmark $x \rightarrow 2$
4) $f(a)=2 \sqrt{ }$

Evaluate
1)

$$
\lim _{x \rightarrow 0}[\cos x-\tan x]^{2}=[\cos 0-\tan 0]^{2}
$$

2) $\lim _{x \rightarrow-4} \frac{x^{3}+4 x^{2}}{x^{2}+4 x}=\frac{(-4)^{3}+4(-4)^{2}}{(-4)^{2}+4(-4)}=\frac{-64+64}{16-16}=\frac{0}{0}$ I.F.

$$
=\lim _{x \rightarrow-4} \frac{x^{2}(x+4)}{x(x+4)}=\lim _{x \rightarrow-4} x=-4
$$

$$
\lim _{x \rightarrow-2} \sqrt{x^{4}+3 x+6}=\sqrt{(-2)^{4}+3(-2)+6}
$$

$$
=\sqrt{16+6+6}=\sqrt{16}=4
$$

Sep 11-10:28 AM

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(x+3)^{-1}-3^{-1}}{x}= \frac{(0+3)^{-1}-3^{-1}}{0}=\frac{3^{-1}-3^{-1}}{0}=\frac{0}{0} \\
&=\lim _{x \rightarrow 0} \frac{\frac{1}{x+3}-\frac{1}{3}}{x}=\lim _{x \rightarrow 0} \frac{(x+3) \cdot 3 \cdot \frac{1}{x+3}-(x+3) \cdot x \cdot \frac{1}{3}}{x(x+3) \cdot 3} \\
&=\lim _{x \rightarrow 0} \frac{3-(x+3)}{3 x(x+3)} \\
&=\lim _{x \rightarrow 0} \frac{\left.3-\frac{1}{x}-3\right)}{3 x(x+3)} \\
&=\lim _{x \rightarrow 0} \frac{-1}{3(x+3)}=\frac{-1}{3(0+3)} \\
&=\frac{-1}{9}
\end{aligned}
$$

$$
\begin{array}{ll}
\lim _{x \rightarrow 4} f(x) & \text { if } \quad 4 x-9 \leq f(x) \leq x^{2}-4 x+7 \\
\text { for } x \geq 0 . & \lim _{x \rightarrow 4}(4 x-9)=4(4)-9=7 \\
& \lim _{x \rightarrow 4}\left(x^{2}-4 x+7\right)=4^{2}-4(4)+7=7
\end{array}
$$

By Squeeze theorem, $\lim _{x \rightarrow 4} f(x)=7$

Prove $\lim _{x \rightarrow 0} x^{2} \cos \frac{2}{x}=0$

$$
\begin{aligned}
& \text { Hint: } \begin{array}{l}
\text { So }-1 \leq \cos \frac{2}{x} \leq 1 \\
\text { multiply by } x^{2} \geq 0
\end{array} \\
& \qquad-x^{2} \leq x^{2} \cos \frac{\alpha}{x} \leq x^{2} \\
& \lim _{x \rightarrow 0}\left(-x^{2}\right)=\lim _{x \rightarrow 0} x^{2}=0 \quad \text { by S.T. } \quad \lim _{x \rightarrow 0} x^{2} \cos \frac{\alpha}{x}=0
\end{aligned}
$$

Given $\quad f(x)=\sqrt{x}$
Evaluate $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a}$

$$
\begin{aligned}
& \frac{x-a}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})} \\
&=\lim _{x \rightarrow a} \frac{\text { By direct Subs. }}{(x-a)(\sqrt{x}+\sqrt{a})}=\frac{\sqrt{a}-\sqrt{a}}{a-a}=\frac{0}{0} \\
&=\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})}=\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{\sqrt{a}+\sqrt{a}} \\
&=\frac{1}{2 \sqrt{a}}
\end{aligned}
$$

Sep 11-10:47 AM

Evaluate $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{4}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h}=\frac{(x+0)^{4}-x^{4}}{0}=\frac{0}{0} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}\right]^{2}-\left[x^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+x^{2}\right]\left[(x+h)^{2}-x^{2}\right]}{h}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+x\right)[(x+h)[x][(x+x-x]}{h} \\
& =\lim _{h \rightarrow 0}\left[(x+h)^{2}+x^{2}\right][x+h+x] \\
& =\left[(x+0)^{2}+x^{2}\right][x+0+1] \\
& \left.=2 x^{2} \cdot 2 x=4 x^{3}\right]
\end{aligned}
$$

The Precise definition of a limit:

for every $\varepsilon>0$, there is a $\delta>0$ Such that if $|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.

Prove $\lim (2 x-1)=7$

$$
\begin{aligned}
& |f(x)-L|<\varepsilon \quad \text { whenever } \quad|x-a|<\delta \\
& |2 x-1-7|<\varepsilon \quad|x-4|<\delta \\
& |2 x-8|<\varepsilon \\
& |2(x-4)|<\varepsilon \\
& 2|x-4|<\varepsilon \\
& |x-4|<\frac{\varepsilon}{2} \\
& |x-4|<\delta \\
& \varepsilon=1 \rightarrow \delta=\frac{1}{2}=.5 \\
& \varepsilon=2 \rightarrow \delta=\frac{2}{2}=1
\end{aligned}
$$

Sep 11-11:09 AM

Prove $\lim _{x \rightarrow 2}\left(\frac{1}{2} x+3\right)=4$

$$
\begin{aligned}
& x \rightarrow 2 \quad \text { By direct Subs., } \\
& \frac{1}{2}(2)+3=1+3=4 \checkmark \\
& |f(x)-L|<\varepsilon \text { whenever } \quad|x-a|<\delta \\
& \left|\frac{1}{2} x+3-4\right|<\varepsilon \quad|x-2|<\delta \\
& \left|\frac{1}{2} x-1\right|<\varepsilon \quad|x-2|<\delta \\
& \left|\frac{x-2}{2}\right|<\varepsilon=|x-2|<\delta \\
& |x-2|<2 \varepsilon \underbrace{\delta=2 \varepsilon}_{=1}=\delta=2 \quad|x-2|<\delta\} \\
& \text { If } \varepsilon=1, \delta=2
\end{aligned}
$$

If $\varepsilon=\frac{1}{2}, \quad \delta=2\left(\frac{1}{2}\right)=1$

